wbia.algo.detect package
Subpackages
Submodules
wbia.algo.detect.azure module
wbia.algo.detect.canonical module
Interface to Lightnet object proposals.
- class wbia.algo.detect.canonical.ImageFilePathList(filepaths, targets=True, transform=None, target_transform=None)[source]
Bases:
torch.utils.data.dataset.Dataset
wbia.algo.detect.darknet module
Interface to Darknet object proposals.
- wbia.algo.detect.darknet.detect(gpath_list, config_filepath, weight_filepath, class_filepath, sensitivity, verbose=False, use_gpu=True, use_gpu_id=0, **kwargs)[source]
- Parameters
gpath_list (list of str) – the list of image paths that need proposal candidates
Kwargs (optional): refer to the Darknet documentation for configuration settings
- Returns
iter
- wbia.algo.detect.darknet.detect_gid_list(ibs, gid_list, downsample=True, verbose=False, **kwargs)[source]
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the Darknet documentation for configuration settings
- Parameters
ibs (wbia.IBEISController) – image analysis api
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) – a flag to indicate if the original image sizes should be used; defaults to True
- Kwargs:
detector, config_filepath, weights_filepath, verbose
- Yields
tuple – (gid, gpath, result_list)
- CommandLine:
python -m wbia.algo.detect.darknet detect_gid_list –show
Example
>>> # DISABLE_DOCTEST >>> from wbia.algo.detect.darknet import * # NOQA >>> from wbia.core_images import LocalizerConfig >>> import wbia >>> ibs = wbia.opendb('testdb1') >>> gid_list = ibs.get_valid_gids() >>> config = {'verbose': True} >>> downsample = False >>> results_list = detect_gid_list(ibs, gid_list, downsample, **config) >>> results_list = list(results_list) >>> print('result lens = %r' % (map(len, list(results_list)))) >>> print('result[0] = %r' % (len(list(results_list[0][2])))) >>> config = {'verbose': True} >>> downsample = False >>> results_list = detect_gid_list(ibs, gid_list, downsample, **config) >>> results_list = list(results_list) >>> print('result lens = %r' % (map(len, list(results_list)))) >>> print('result[0] = %r' % (len(list(results_list[0][2])))) >>> ut.quit_if_noshow() >>> import wbia.plottool as pt >>> ut.show_if_requested()
- Yields
results (list of dict)
wbia.algo.detect.densenet module
wbia.algo.detect.fasterrcnn module
Interface to Faster R-CNN object proposals.
- wbia.algo.detect.fasterrcnn.detect(gpath_list, config_filepath, weight_filepath, class_filepath, sensitivity, verbose=False, use_gpu=True, use_gpu_id=0, **kwargs)[source]
- Parameters
gpath_list (list of str) – the list of image paths that need proposal candidates
Kwargs (optional): refer to the Faster R-CNN documentation for configuration settings
- Returns
iter
- wbia.algo.detect.fasterrcnn.detect_gid_list(ibs, gid_list, downsample=True, verbose=False, **kwargs)[source]
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the Faster R-CNN documentation for configuration settings
- Parameters
ibs (wbia.IBEISController) – image analysis api
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) – a flag to indicate if the original image sizes should be used; defaults to True
- Kwargs:
detector, config_filepath, weights_filepath, verbose
- Yields
tuple – (gid, gpath, result_list)
- CommandLine:
python -m wbia.algo.detect.fasterrcnn detect_gid_list –show
Example
>>> # DISABLE_DOCTEST >>> from wbia.algo.detect.fasterrcnn import * # NOQA >>> from wbia.core_images import LocalizerConfig >>> import wbia >>> ibs = wbia.opendb('testdb1') >>> gid_list = ibs.get_valid_gids() >>> config = {'verbose': True} >>> downsample = False >>> results_list = detect_gid_list(ibs, gid_list, downsample, **config) >>> results_list = list(results_list) >>> print('result lens = %r' % (map(len, list(results_list)))) >>> print('result[0] = %r' % (len(list(results_list[0][2])))) >>> config = {'verbose': True} >>> downsample = False >>> results_list = detect_gid_list(ibs, gid_list, downsample, **config) >>> results_list = list(results_list) >>> print('result lens = %r' % (map(len, list(results_list)))) >>> print('result[0] = %r' % (len(list(results_list[0][2])))) >>> ut.quit_if_noshow() >>> import wbia.plottool as pt >>> ut.show_if_requested()
- Yields
results (list of dict)
wbia.algo.detect.grabmodels module
- wbia.algo.detect.grabmodels.ensure_models(modeldir='default', verbose=True)[source]
- Parameters
modeldir (str) –
- CommandLine:
python -m wbia.algo.detect.grabmodels –test-ensure_models
Example
>>> # ENABLE_DOCTEST >>> from wbia.algo.detect.grabmodels import * # NOQA >>> modeldir = 'default' >>> result = ensure_models(modeldir) >>> print(result)
- wbia.algo.detect.grabmodels.get_species_trees_paths(species, modeldir='default')[source]
- Parameters
species –
modeldir (str) –
- Returns
trees_path
- Return type
?
- CommandLine:
python -m wbia.algo.detect.grabmodels –test-get_species_trees_paths
Example
>>> # ENABLE_DOCTEST >>> from wbia.algo.detect.grabmodels import * # NOQA >>> import wbia >>> # build test data >>> species = wbia.const.TEST_SPECIES.ZEB_PLAIN >>> modeldir = 'default' >>> # execute function >>> trees_path = get_species_trees_paths(species, modeldir) >>> # verify results >>> result = str(trees_path) >>> print(result)
wbia.algo.detect.lightnet module
Interface to Lightnet object proposals.
- wbia.algo.detect.lightnet.detect(gpath_list, config_filepath=None, weight_filepath=None, classes_filepath=None, sensitivity=0.0, verbose=False, flip=False, batch_size=192, **kwargs)[source]
Detect image filepaths with lightnet.
- Parameters
gpath_list (list of str) – the list of image paths that need proposal candidates
Kwargs (optional): refer to the Lightnet documentation for configuration settings
- Returns
iter
- wbia.algo.detect.lightnet.detect_gid_list(ibs, gid_list, verbose=False, **kwargs)[source]
Detect gid_list with lightnet.
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
Kwargs (optional): refer to the Lightnet documentation for configuration settings
- Parameters
ibs (wbia.IBEISController) – image analysis api
gid_list (list of int) – the list of IBEIS image_rowids that need detection
- Kwargs:
detector, config_filepath, weight_filepath, verbose
- Yields
tuple – (gid, gpath, result_list)
wbia.algo.detect.orientation module
wbia.algo.detect.randomforest module
Interface to pyrf random forest object detection.
- wbia.algo.detect.randomforest.detect(ibs, gpath_list, tree_path_list, **kwargs)[source]
- Parameters
gpath_list (list of str) – the list of image paths that need detection
tree_path_list (list of str) – the list of trees to load for detection
Kwargs (optional): refer to the PyRF documentation for configuration settings
- Returns
iter
- wbia.algo.detect.randomforest.detect_gid_list(ibs, gid_list, tree_path_list, downsample=True, **kwargs)[source]
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
tree_path_list (list of str) – the list of trees to load for detection
downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the PyRF documentation for configuration settings
- Yields
results (list of dict)
- wbia.algo.detect.randomforest.detect_gid_list_with_species(ibs, gid_list, species, downsample=True, **kwargs)[source]
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
species (str) – the species that should be used to select the pre-trained random forest model
downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the PyRF documentation for configuration settings
- Returns
iter
- CommandLine:
python -m wbia.algo.detect.randomforest –test-detect_gid_list_with_species
Example
>>> # DISABLE_DOCTEST >>> from wbia.algo.detect.randomforest import * # NOQA >>> from wbia.algo.detect.randomforest import _get_models # NOQA >>> import wbia >>> # build test data >>> ibs = wbia.opendb('testdb1') >>> species = wbia.const.TEST_SPECIES.ZEB_PLAIN >>> gid_list = ibs.get_valid_gids() >>> downsample = True >>> kwargs = {} >>> # execute function >>> result = detect_gid_list_with_species(ibs, gid_list, species, downsample) >>> # verify results >>> print(result)
- wbia.algo.detect.randomforest.detect_gpath_list_with_species(ibs, gpath_list, species, **kwargs)[source]
- Parameters
gpath_list (list of str) – the list of image paths that need detection
species (str) – the species that should be used to select the pre-trained random forest model
downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the PyRF documentation for configuration settings
- Yields
iter
- wbia.algo.detect.randomforest.train_gid_list(ibs, gid_list, trees_path=None, species=None, setup=True, teardown=False, **kwargs)[source]
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
trees_path (str) – the path that the trees will be saved into (along with temporary training inventory folders that are deleted once training is finished)
species (str) – the species that should be used to assign to the newly trained trees
Kwargs (optional): refer to the PyRF documentation for configuration settings
- Returns
None
- wbia.algo.detect.randomforest.train_gpath_list(ibs, train_pos_cpath_list, train_neg_cpath_list, trees_path=None, **kwargs)[source]
- Parameters
train_pos_cpath_list (list of str) – the list of positive image paths for training
train_neg_cpath_list (list of str) – the list of negative image paths for training
trees_path (str) – the path that the trees will be saved into (along with temporary training inventory folders that are deleted once training is finished)
species (str, optional) – the species that should be used to assign to the newly trained trees
Kwargs (optional): refer to the PyRF documentation for configuration settings
- Returns
None
wbia.algo.detect.rf module
Interface to Darknet object proposals.
wbia.algo.detect.selectivesearch module
Interface to Selective Search object proposals.
- wbia.algo.detect.selectivesearch.detect(gpath_list, matlab_command='selective_search', verbose=False, **kwargs)[source]
- Parameters
gpath_list (list of str) – the list of image paths that need proposal candidates
Kwargs (optional): refer to the Selective Search documentation for configuration settings
- Returns
iter
- wbia.algo.detect.selectivesearch.detect_gid_list(ibs, gid_list, downsample=True, verbose=False, **kwargs)[source]
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the Selective Search documentation for configuration settings
- Parameters
ibs (wbia.IBEISController) – image analysis api
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) – a flag to indicate if the original image sizes should be used; defaults to True
- Kwargs:
detector, config_filepath, weights_filepath, verbose
- Yields
tuple – (gid, gpath, result_list)
- CommandLine:
python -m wbia.algo.detect.selectivesearch detect_gid_list –show
Example
>>> # DISABLE_DOCTEST >>> from wbia.algo.detect.selectivesearch import * # NOQA >>> from wbia.core_images import LocalizerConfig >>> import wbia >>> ibs = wbia.opendb('testdb1') >>> gid_list = ibs.get_valid_gids() >>> config = {'matlab_command': 'selective_search', 'verbose': True} >>> downsample = False >>> results_list = detect_gid_list(ibs, gid_list, downsample, **config) >>> results_list = list(results_list) >>> print('result lens = %r' % (map(len, list(results_list)))) >>> print('result[0] = %r' % (len(list(results_list[0][2])))) >>> config = {'matlab_command': 'selective_search_rcnn', 'verbose': True} >>> downsample = False >>> results_list = detect_gid_list(ibs, gid_list, downsample, **config) >>> results_list = list(results_list) >>> print('result lens = %r' % (map(len, list(results_list)))) >>> print('result[0] = %r' % (len(list(results_list[0][2])))) >>> ut.quit_if_noshow() >>> import wbia.plottool as pt >>> ut.show_if_requested()
- Yields
results (list of dict)
wbia.algo.detect.ssd module
Interface to SSD object proposals.
- wbia.algo.detect.ssd.detect(gpath_list, config_filepath, weight_filepath, class_filepath, sensitivity, verbose=False, use_gpu=True, use_gpu_id=0, **kwargs)[source]
- Parameters
gpath_list (list of str) – the list of image paths that need proposal candidates
Kwargs (optional): refer to the SSD documentation for configuration settings
- Returns
iter
- wbia.algo.detect.ssd.detect_gid_list(ibs, gid_list, downsample=True, verbose=False, **kwargs)[source]
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the SSD documentation for configuration settings
- Parameters
ibs (wbia.IBEISController) – image analysis api
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) – a flag to indicate if the original image sizes should be used; defaults to True
- Kwargs:
detector, config_filepath, weights_filepath, verbose
- Yields
tuple – (gid, gpath, result_list)
- CommandLine:
python -m wbia.algo.detect.ssd detect_gid_list –show
Example
>>> # DISABLE_DOCTEST >>> from wbia.algo.detect.ssd import * # NOQA >>> from wbia.core_images import LocalizerConfig >>> import wbia >>> ibs = wbia.opendb('testdb1') >>> gid_list = ibs.get_valid_gids() >>> config = {'verbose': True} >>> downsample = False >>> results_list = detect_gid_list(ibs, gid_list, downsample, **config) >>> results_list = list(results_list) >>> print('result lens = %r' % (map(len, list(results_list)))) >>> print('result[0] = %r' % (len(list(results_list[0][2])))) >>> config = {'verbose': True} >>> downsample = False >>> results_list = detect_gid_list(ibs, gid_list, downsample, **config) >>> results_list = list(results_list) >>> print('result lens = %r' % (map(len, list(results_list)))) >>> print('result[0] = %r' % (len(list(results_list[0][2])))) >>> ut.quit_if_noshow() >>> import wbia.plottool as pt >>> ut.show_if_requested()
- Yields
results (list of dict)
wbia.algo.detect.svm module
Interface to Darknet object proposals.
wbia.algo.detect.yolo module
Interface to pydarknet yolo object detection.
- wbia.algo.detect.yolo.detect(gpath_list, detector=None, config_filepath=None, weights_filepath=None, **kwargs)[source]
- Parameters
gpath_list (list of str) – the list of image paths that need detection
Kwargs (optional): refer to the PyDarknet documentation for configuration settings
- Returns
iter
Example
>>> # DISABLE_DOCTEST >>> from wbia.algo.detect.yolo import * # NOQA >>> from wbia.core_images import LocalizerConfig >>> import wbia >>> ibs = wbia.opendb(defaultdb='WS_ALL') >>> gid_list = ibs.images()._rowids[0:1] >>> gpath_list = ibs.get_image_paths(gid_list) >>> dpath = '/media/raid/work/WS_ALL/localizer_backup/' >>> weights_filepath = join(dpath, 'detect.yolo.2.39000.weights') >>> config_filepath = join(dpath, 'detect.yolo.2.cfg') >>> config = LocalizerConfig( >>> weights_filepath=weights_filepath, >>> config_filepath=config_filepath, >>> ) >>> kwargs = config.asdict() >>> ut.delete_dict_keys(kwargs, ['weights_filepath', 'config_filepath']) >>> ut.delete_dict_keys(kwargs, ['thumbnail_cfg', 'species', 'algo'])
- wbia.algo.detect.yolo.detect_gid_list(ibs, gid_list, downsample=False, **kwargs)[source]
- Parameters
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the PyDarknet documentation for configuration settings
- Parameters
ibs (wbia.IBEISController) – image analysis api
gid_list (list of int) – the list of IBEIS image_rowids that need detection
downsample (bool, optional) – a flag to indicate if the original image sizes should be used; defaults to True
- Kwargs:
detector, config_filepath, weights_filepath, verbose
- Yields
tuple – (gid, gpath, result_list)
- CommandLine:
python -m wbia.algo.detect.yolo detect_gid_list –show
Example
>>> # DISABLE_DOCTEST >>> from wbia.algo.detect.yolo import * # NOQA >>> from wbia.core_images import LocalizerConfig >>> import wbia >>> ibs = wbia.opendb(defaultdb='WS_ALL') >>> gid_list = ibs.images()._rowids[0:1] >>> kwargs = config = LocalizerConfig(**{ >>> 'weights_filepath': '/media/raid/work/WS_ALL/localizer_backup/detect.yolo.2.39000.weights', >>> 'config_filepath': '/media/raid/work/WS_ALL/localizer_backup/detect.yolo.2.cfg', >>> }) >>> exec(ut.execstr_dict(config), globals()) >>> #classes_fpath = '/media/raid/work/WS_ALL/localizer_backup/detect.yolo.2.cfg.classes' >>> downsample = False >>> (gid, gpath, result_list) = detect_gid_list(ibs, gid_list, downsample, **config) >>> result = ('(gid, gpath, result_list) = %s' % (ut.repr2((gid, gpath, result_list)),)) >>> print(result) >>> ut.quit_if_noshow() >>> import wbia.plottool as pt >>> ut.show_if_requested()
- Yields
results (list of dict)
Module contents
- wbia.algo.detect.IMPORT_TUPLES = [('grabmodels', None), ('randomforest', None), ('yolo', None), ('assigner', None)]
Regen Command: cd /Users/bluemellophone/code/wbia/wbia/algo/detect makeinit.py –modname=wbia.algo.detect
- wbia.algo.detect.reassign_submodule_attributes(verbose=True)[source]
why reloading all the modules doesnt do this I don’t know
- wbia.algo.detect.rrrr(verbose=True)
Reloads wbia.algo.detect and submodules